SCRIdb.tools.json_jobs¶
-
SCRIdb.tools.
json_jobs
(sample_data, config_path, save=True)¶ Constructor for
json
formatted files for batch processing of hashtag samples. It Compilesinput
andlabel
files for each sample in the provided data frame.- Parameters
sample_data (
DataFrame
) – Data frame of samples to be processedconfig_path – Path to root directory of hashtag pipeline executable
submit.sh
. It also serves as the parent directory forconfig
where.json
files will be written.save (
bool
) – Save a copy on jobs file to path defined in config_jobs_yml, else return a copy.
- Return type
- Returns
Inputs, labels, and a list of excluded samples
Example
>>> from SCRIdb.worker import * >>> args = json.load(open(os.path.expanduser("~/.config.json"))) >>> db_connect.conn(args)
>>> f_in=[ "Sample_CCR7_DC_1_HTO_IGO_10587_12", "Sample_CCR7_DC_2_HTO_IGO_10587_13", "Sample_CCR7_DC_3_HTO_IGO_10587_14", "Sample_CCR7_DC_4_HTO_IGO_10587_15" ] >>> f_in = " ".join(f_in) >>> source_path="/Volumes/peerd/FASTQ/Project_10587/MICHELLE_0194" >>> target_path="s3://dp-lab-data/sc-seq/Project_10587" >>> sd = pd.DataFrame( { "proj_folder": [source_path], "s3_loc": [target_path], "fastq": [f_in] } ) >>> sample_data = sample_data_frame(sd) >>> inputs_labels, exclude_s = json_jobs( sample_data, config_path=os.path.expanduser("~/sharp-0.0.1"), )